28. Qiu, H., Biernat, E., Govind, C. K., Rawal, Y.,
Chereji, R.V., Clark, D. J., Hinnebusch, A. G., 2020. Chromatin remodeler Ino80C acts independently of H2A. Z to evict promoter nucleosomes and stimulate transcription of highly expressed genes in yeast, Nucleic Acids Res. 48(15), 8408-8430.
https://doi.org/10.1093/nar/gkaa571
27. Beati, P.,
Chereji, R.V., 2020. Creating 2D occupancy plots using plot2DO, Stem Cell Transcriptional Networks, 93-108.
https://doi.org/10.1007/978-1-0716-0301-7_5
26. Clark, S.,
Chereji, R.V., Lee, P., Fields, R.D., Clark, D.J., 2019. Differential nucleosome spacing in neurons and glia, Neurosci Lett., 134559.
https://doi.org/10.1016/j.neulet.2019.134559
25.
Chereji, R.V., Bryson, T.D., Henikoff, S., 2019. Quantitative MNase-seq accurately maps nucleosome occupancy levels, Genome Biol. 20(1), 1-18.
https://doi.org/10.1186/s13059-019-1815-z
24.
Chereji, R.V.*, Eriksson, P.R.
*, Ocampo, J.
*, Prajapati, H.K., Clark D.J., 2019. Accessibility of promoter DNA is not the primary determinant of chromatin-mediated gene regulation, Genome Res. gr-249326.
https://doi.org/10.1101/gr.249326.119
23. Ocampo, J.
*,
Chereji, R.V.*, Eriksson, P.R., Clark, D.J., 2019. Contrasting roles of the RSC and ISW1/CHD1 chromatin remodelers in RNA polymerase II elongation and termination. Genome Res. 29, 407–417.
https://doi.org/10.1101/gr.242032.118
22. Hamdani, O., Dhillon, N., Hsieh, T.-H.S., Fujita, T., Ocampo, J., Kirkland, J.G., Lawrimore, J., Kobayashi, T.J., Friedman, B., Fulton, D., Wu, K.Y.,
Chereji, R.V., Oki, M., Bloom, K., Clark, D.J., Rando, O.J., Kamakaka, R.T., 2019. Transfer RNA Genes Affect Chromosome Structure and Function via Local Effects. Mol. Cell Biol.
https://doi.org/10.1128/MCB.00432-18
21. Chang, H.-W., Valieva, M.E., Safina, A.,
Chereji, R.V., Wang, J., Kulaeva, O.I., Morozov, A.V., Kirpichnikov, M.P., Feofanov, A.V., Gurova, K.V., Studitsky, V.M., 2018. Mechanism of FACT removal from transcribed genes by anticancer drugs curaxins. Science Advances 4, eaav2131.
https://doi.org/10.1126/sciadv.aav2131
20. Mehta, G.D., Ball, D.A., Eriksson, P.R.,
Chereji, R.V., Clark, D.J., McNally, J.G., Karpova, T.S., 2018. Single-Molecule Analysis Reveals Linked Cycles of RSC Chromatin Remodeling and Ace1p Transcription Factor Binding in Yeast. Mol. Cell 72, 875-887.e9.
https://doi.org/10.1016/j.molcel.2018.09.009
19. Rawal, Y.
*,
Chereji, R.V.*, Qiu, H., Ananthakrishnan, S., Govind, C.K., Clark, D.J., Hinnebusch, A.G., 2018a. SWI/SNF and RSC cooperate to reposition and evict promoter nucleosomes at highly expressed genes in yeast. Genes Dev. 32, 695–710.
https://doi.org/10.1101/gad.312850.118
18. Ouda, R., Sarai, N., Nehru, V., Patel, M.C., Debrosse, M., Bachu, M.,
Chereji, R.V., Eriksson, P.R., Clark, D.J., Ozato, K., 2018. SPT6 interacts with NSD2 and facilitates interferon-induced transcription. FEBS Letters 592, 1681–1692.
https://doi.org/10.1002/1873-3468.13069
17.
Chereji, R.V., Clark, D.J., 2018. Major Determinants of Nucleosome Positioning. Biophys. J. 114, 2279–2289.
https://doi.org/10.1016/j.bpj.2018.03.015
16. Rawal, Y.
*,
Chereji, R.V.*, Valabhoju, V., Qiu, H., Ocampo, J., Clark, D.J., Hinnebusch, A.G., 2018b. Gcn4 Binding in Coding Regions Can Activate Internal and Canonical 5' Promoters in Yeast. Molecular Cell 70, 297-311.e4.
https://doi.org/10.1016/j.molcel.2018.03.007
15.
Chereji, R.V.*, Ramachandran, S.
*, Bryson, T.D., Henikoff, S., 2018. Precise genome-wide mapping of single nucleosomes and linkers in vivo. Genome Biol. 19, 19.
https://doi.org/10.1186/s13059-018-1398-0
14. Johnson, T.A.
*,
Chereji, R.V.*, Stavreva, D.A., Morris, S.A., Hager, G.L., Clark, D.J., 2018. Conventional and pioneer modes of glucocorticoid receptor interaction with enhancer chromatin in vivo. Nucleic Acids Res. 46, 203–214.
https://doi.org/10.1093/nar/gkx1044
13.
Chereji, R.V.*, Bharatula, V.
*, Elfving, N., Blomberg, J., Larsson, M., Morozov, A.V., Broach, J.R., Björklund, S., 2017a. Mediator binds to boundaries of chromosomal interaction domains and to proteins involved in DNA looping, RNA metabolism, chromatin remodeling, and actin assembly. Nucleic Acids Res. 45, 8806–8821.
https://doi.org/10.1093/nar/gkx491
12.
Chereji, R.V.*, Ocampo, J.
*, Clark, D.J., 2017b. MNase-Sensitive Complexes in Yeast: Nucleosomes and Non-histone Barriers. Mol. Cell 65, 565-577.e3.
https://doi.org/10.1016/j.molcel.2016.12.009
11. Ocampo, J.
*,
Chereji, R.V.*, Eriksson, P.R., Clark, D.J., 2016. The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo. Nucleic Acids Res. 44, 4625–4635.
https://doi.org/10.1093/nar/gkw068
10. Qiu, H.
*,
Chereji, R.V.*, Hu, C., Cole, H.A., Rawal, Y., Clark, D.J., Hinnebusch, A.G., 2016. Genome-wide cooperation by HAT Gcn5, remodeler SWI/SNF, and chaperone Ydj1 in promoter nucleosome eviction and transcriptional activation. Genome Res. 26, 211–225.
https://doi.org/10.1101/gr.196337.115
9.
Chereji, R.V.*, Kan, T.-W.
*, Grudniewska, M.K., Romashchenko, A.V., Berezikov, E., Zhimulev, I.F., Guryev, V., Morozov, A.V., Moshkin, Y.M., 2016. Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster. Nucleic Acids Res. 44, 1036–1051.
https://doi.org/10.1093/nar/gkv978
8.
Chereji, R.V., Morozov, A.V., 2015. Functional roles of nucleosome stability and dynamics. Brief. Funct. Genomics 14, 50–60.
https://doi.org/10.1093/bfgp/elu038
7. Cole, H.A., Ocampo, J., Iben, J.R.,
Chereji, R.V., Clark, D.J., 2014. Heavy transcription of yeast genes correlates with differential loss of histone H2B relative to H4 and queued RNA polymerases. Nucleic Acids Res. 42, 12512–12522.
https://doi.org/10.1093/nar/gku1013
6. Ganguli, D.
*,
Chereji, R.V.*, Iben, J.R., Cole, H.A., Clark, D.J., 2014. RSC-dependent constructive and destructive interference between opposing arrays of phased nucleosomes in yeast. Genome Res. 24, 1637–1649.
https://doi.org/10.1101/gr.177014.114
5.
Chereji, R.V., Morozov, A.V., 2014. Ubiquitous nucleosome crowding in the yeast genome. Proceedings of the National Academy of Sciences USA 111, 5236–5241.
https://doi.org/10.1073/pnas.1321001111
4. Elfving, N.
*,
Chereji, R.V.*, Bharatula, V., Björklund, S., Morozov, A.V., Broach, J.R., 2014. A dynamic interplay of nucleosome and Msn2 binding regulates kinetics of gene activation and repression following stress. Nucleic Acids Res. 42, 5468–5482.
https://doi.org/10.1093/nar/gku176
3. Petrenko, N.,
Chereji, R.V., McClean, M.N., Morozov, A.V., Broach, J.R., 2013. Noise and interlocking signaling pathways promote distinct transcription factor dynamics in response to different stresses. Mol Biol Cell 24, 2045–2057.
https://doi.org/10.1091/mbc.e12-12-0870
2.
Chereji, R.V., Morozov, A.V., 2011. Statistical Mechanics of Nucleosomes Constrained by Higher-Order Chromatin Structure. J. Stat. Phys. 144, 379–404.
https://doi.org/10.1007/s10955-011-0214-y
1.
Chereji, R.V., Tolkunov, D., Locke, G., Morozov, A.V., 2011. Statistical mechanics of nucleosome ordering by chromatin-structure-induced two-body interactions. Phys. Rev. E 83, 050903.
https://doi.org/10.1103/PhysRevE.83.050903
* These authors contributed equally